
© Semiconductor Components Industries, LLC, 2006

June, 2006 − Rev. 0
1 Publication Order Number:

AND8267/D

AND8267/D

Controlling the NCP5602
with the I2C Software

Prepared by: Michael Bairanzade
ON Semiconductor

Abstract: The NCP5602 double LED driver includes the
capability to remotely control either the normal backlight or
the icon function. Moreover, when running the back light
mode, the chip has a sixteen steps output current adjustment
function to accurately set up the LED brightness. These
functions are controlled by a standard I2C protocol as briefly
depicted in the NCP5602 data sheet. This Application Note
gives a software example to control all the functions
embedded into the chip from a basic eight bit micro
controller. The assembler code can be ported to other MCU,
assuming the basic instructions are available in such MCU.

I2C PROTOCOL: BASIC CONCEPT
The I2C, an acronym for Interface Interchange Chip, has

been developed by Philips semiconductors more than 25
years ago. The concept is built on a serial communication,
using one clock line to synchronize the data flow, the second
line being a bi−directional open drain dedicated to the data
content. The two lines are identified as:

− SCL � Serial Clock Line

− SDA � Serial Data Line
The data are based on a byte format with a rate up to

400 kHz for the standard I2C, and up to 3 MHz for the new

High Speed protocol. On top of the format, the main
advantage of the I2C is the capability to share a common
clock and data lines bus with several peripheral devices.
This is achieved by using the first byte, when a new
transaction takes place, as the address of the physical device
one wants to access. In order to make sure no collision occur
on the SDA line, the system use only one master at a time,
the other peripherals being in the slave mode, ready to read
the I2C data bus.

When no data transfer takes place, both lines are at High
level with no clock activity. To start a data exchange, the
Master forces the SDA low while SCL = High: this is the
START pulse and all the peripheral shall be ready to receive
the next byte following that bit.

As already mentioned, the first byte carries the physical
address of the selected peripheral sharing the same I2C bus.
The address is built with the bits[7:1], MSB first, the LSB bit
being used to identify the type of communication: see
Figure 1. Moreover, in order to avoid data collision, the
physical address must be registered by the I2C committee,
making sure no device, sharing a common bus, could have
identical address.

SDA

SCL

MPU send bit

The NCP5602 reads bit

MPU enables clock

The NCP5602 send ACK

B0B1B2B3B4B5B6B7

Start

ACK

Peripheral address

Read/Write bit
B0 = L −> Write
B0 = H −> Read

ACK = High −> byte not accepted
ACK = Low −> byte accepted

The SDA bits are updated when SCL = Low and must stay stable when SCL = High.
The peripheral reads the SDA bits when SCL = High

Figure 1. Basic I2C Address Byte Format

APPLICATION NOTE

http://onsemi.com

AND8267/D

http://onsemi.com
2

All the timings are fully defined by the I2C specifications
and any system dealing with the protocol must fulfill these
specifications (see I2C document, version 2)

Of course, the concept would be useless without the
capability to send one or several data byte following the
selected address, but such a feature is a part of the I2C protocol.

Figure 2. Basic I2C NCP5602 Byte Format Example

SDA

SCL

The NCP5602 send ACK

B0B1B2B3B4B5B6B7

Start

ACK

NCP5602 address = $9E

Read/Write bit = Low −> Write Data

ACK = Low −> byte accepted

B0B1B2B3B4B5B6B7 B0B1B2B3B4B5B6B7

NCP5602 Internal register = $01 NCP5602 : Output Current Value = 10 mA

I2C transmit completed

ACK ACK

To communicate with the NCP5602, the MCU must send
three consecutive bytes:

− First byte � physical address = $9E

− Second byte � internal register access = $01

− Third byte � output current value: $00 to $20

The clock and data signals do not need to have an accurate
50% duty cycle, but care must be observed to send the right
number of clock pulses to the NCP5602: incorrect count
yields lost of synchronization and the chip no longer
acknowledges the new programming data. In particular, the
software must take into account the 9th bit requested to
support the ACK feed back from the NCP5602.

On the other hand, since the SDA line is used to transmit
the data in both direction, the I/O pin of the MCU must be
configured to either an Output (when sending data on the
SDA) or an Input when waiting for the acknowledge.

The basic waveforms given Figure 2 illustrate the digital
contain of SCL / SDA to program a 10 mA output current.

The transmission is completed when a STOP bit is send by
the MCU: this is achieved by rising SCL to High, keeping
SDA = Low, then rising SDA while SCL is at the High level:
see Figure 2.

SOFTWARE SECTION

Note: the software developed in this Application Note can be
freely re−used to support customer engineering purposes.
However, the software is delivered “as is” and
ON Semiconductor assumes no responsibility in the event of
no function in a final system: see the legal note attached at
the end of this document.

The primary purpose of this routine was the support of the
white LED drivers developed by ON Semiconductor. A
simple but efficient low cost micro controller has been
selected in the 8 bits machines family existing in the
Freescale portfolio. On the other hand, since the same
routine is intended to be use in more complex circuit, it has
been decided to use the assembly tools instead of the C or C+
protocol.

The selected MC9S08QG8 micro controller packaged in
a QFN16, brings the basic resources necessary to develop
the routine:

− Flash memory 8 k

− RAM 512 octets

− I/O pins 12

− Clock embedded oscillator

− RS232 port embedded SCI

Although an I2C block exist in the MS9S08QG8, a
specific routine has been created to make possible an easy
transfer to another controller.

Figure 3. Micro Controller Block Diagram

VDD

VSS

RESET

BKGD

PTA0

PTA1

PTA2

PTA3

PTB0/RxD

PTB1/TxD

PTB2/SPSCK

PTB3/MDSI

PTB4/MISO

PTB5/SS

PTB6/SDA

PTB7/SCL

MC9S08QG8

RS232 Port

I2C Port

Programming Pin

Keyboard

The interrupt driven keyboard facility, included in the
MCU, makes possible an easy test routine implementation
to evaluate both the software and the hardware used to
support the NCP5602 development. We will use all four bits
of the PORTA as depicted in the schematic diagram.

The RS232 port is very useful to communicate with an
external PC, making possible, but not mandatory, a remote
control of the NCP5602.

The I2C port will use the two pins already identified in the
MCU block diagram, although the integrated routines will
not be used and replaced by the specific code.

KEYBOARD SUPPORT
The keyboard is connected to the four PORTA bits[3:0],

the interrupt function being activated by the KBIPE register.
With four external push buttons, the system is capable to
control all the functions built in the NCP5602 white LED
driver. A digital timer filters out most of the bounces
generated when pushing the buttons. Once a key is

AND8267/D

http://onsemi.com
3

identified, the associated sub routine is called and the
appropriate function takes place. The software clear the
keyboard interrupt upon return to the idle state. The basic
flowchart is provided Figure 4.

KEYBOARD IRQ ?
No

Yes

Identity Key:

F1 −−> Normal Mode, increase ILED

F2 −−> Normal Mode, decrease ILED

F3 −−> ICON Mode, disconnect LED#1
F4 −−> not implemented

Figure 4. Keyboard Flowchart

The sub routines, associated with each keys, can carry any
type of functions requested by the designer.

I2C PROCEDURE
The sub routine is called by the software when either the

keyboard has been activated, or if a command is detected on
the RS232 port. Depending upon the requested command,
the sub routine send the appropriate message to the I2C port.
As already depicted, three bytes will be transferred:

− First byte � physical address = $9E (cannot be
changed)

− Second byte � internal register access = $01 (cannot
be changed)

− Third byte � output current value: $00 to $20

The software evaluates the Acknowledge bit returned by
the NCP5602 for each byte and either keeps going the
procedure is ACK = Low, or set up an error and exit the sub
routine if ACK = High.

The transmission speed is 200 kHz with the basic clock,
and the three bytes are downloaded in 135 �s. However, the
NCP5602 is not I2C low speed limited and a 400 kHz SCL
clock can be used without any risk of data lost during the
transmission.

The basic flowchart of the program is provided Figure 5.
The schematic NCP5602 demo board is given Figure 6

and shall be controlled by sending the two I2C signals to the
SDA and SCL pins. The software, depicted in this
document, is embedded into the hardware given Figure 7. At
this point, the end user can either re−use both the hardware
and the software, or port the sources into a different MCU
controller.

Encode Parrallel Byte to Serial Byte

Set SDA line as Output

Send I2C Address , Write mode −−> SDA = $9E

Read ACK −−> set SDA = INPUT

Send NCP5602 Intl. register : SDA = $01

Read ACK −−> set SDA = INPUT

ACK = Low ?Data error

Send NCP5602 Output LED Current : SDA = $Iout

Output Bn

Bn = 8 ?

Yes

Read ACK −−> set SDA = INPUT

ACK = Low ?

END

No
Data error

Increase next bit

Figure 5. I2C Basic Flowchart

No

Yes

No

Output Bn

Bn = 8 ?

Yes

Increase next bit
No

ACK = Low ?Data error

Yes

No

Output Bn

Bn = 8 ?

Yes

Increase next bit
No

AND8267/D

http://onsemi.com
4

**
* EQU TABLE *
**
F1 equ !0 ;keyboard 1
F2 equ !1 ;keyboard 2
F3 equ !2 ;keyboard 3
F4 equ !3 ;keyboard 4
LED equ !4 ;system LED
SDA equ !6 ;I2C SDA signal
SCL equ !7 ;I2C SCL signal
ICON equ !5 ;ICON demo board

**
* setup program origin *
**

org RAMstart
temp rmb 1
rs232 rmb 1 ;save RS232 content
gSDA rmb 1 ;contains I2C data
ChipAdr rmb 1 ;contains slave I2C address
ChipReg rmb 1 ;contains NCP5602 internal register address
gLED rmb 1 ;contains the output LED current 1mA/step
gICON rmb 1 ;control ICON mode

**
* Init_KEY − Turns on the Keyboard PORTA *
* *
**
Init_KEY:

bclr !1,KBISC ;disable keyboard IRQ
mov #$00,KBIES ;detect falling edge
lda #$0F
sta PTAPE ;enable PORTA Pull Up resistors
mov #$0F,KBIPE ;enable PORTA bits[0..3] as keyboard
mov #$04,KBISC ;clear previous flag
bset !1,KBISC ;enable keyboard IRQ
rts

**
* KEYBOARD_ISR − SupportKeyboard Interrupt Service Routine. *
* *
**
KeyBoard_isr:

lda PTAD ;get Keybd
sta temp ;store keyboard
bsr keyFilter ;digital filter
lda PTAD ;read PORTA again
cmpa temp ;check is same contain
bne exitKey ;if not, this is a bounce −> do not proceed
coma ;invert byte
and #$0F ;extract low nibble
cmpa #$01 ;check if F1
bne testF2
jsr KeyF1
bra exitKey
jsr sendI2C

testF2 cmpa #$02 ;check if F2

AND8267/D

http://onsemi.com
5

bne testF3
jsr KeyF2
bra exitKey

testF3 cmpa #$04 ;check if F3
bne testF4
jsr KeyF3
bra exitKey

testF4 cmpa #$08 ;check if F4
bne exitKey
jsr KeyF4
bra exitKey

exitKey bset !2,KBISC ;clear previous flag
rti ;return from Interrupt

;*** ON Semiconductor / Toulouse / France ***
;** Michael Bairanzade ***
;** MC9S08QG8 − TSSOP16 ***
;** File: NCP5602_I2C_CNTL.ASM ***

;**
;Revision : Original = 00 September 2005 ***
; update = 1.0 December 2005
;**
 ;send the NCP5602 I2C address = $9E

SendI2C:
bset SDA,PTBDD ;set PORTB Bit6 as Output
lda ChipAdr ;get the I2C byte to send
jsr sendStart ;send the Chip Address
lda PORTD
lsra ;extract SDA
lsra ;extract SDA
lsra ;extract SDA
bcc sChipReg ;SDA = Low −> acknowledge OK
jmp ACKerror ;SDA = High −> no acknowledge, error

 ;send the NCP5602 register address = $01

sChipReg bclr SDA,PTBD ;force I/O = L
bset SDA,PTBDD ;set PORTB Bit6 as Output to write

;to the NCP5602
bclr SCL,PTBD ;set CLOCK = L
lda ChipReg ;send the internal register address
jsr sendByte
lda PORTD
lsra ;extract bit2
lsra ;extract bit2
lsra ;extract bit2
bcc sDATA ;SDA = Low −> acknowledge OK
jmp ACKerror ;SDA = High −> no acknowledge, error

 ;send the NCP5602 data byte

sDATA bclr SDA,PTBD ;set PORTB Bit6 as Output to write to NCP5608
bset SDA,PTBDD
bclr SCL,PTBD ;set CLOCK = L
lda gSDA

AND8267/D

http://onsemi.com
6

jsr sendByte
bclr SDA,PTBDD ;set PORTD Bit2 as Input to read

;the ACKNOWLEDGE
lda PORTD
lsra ;extract bit2
lsra ;extract bit2
lsra ;extract bit2
bcc exitI2C ;SDA = Low −> acknowledge OK
jmp ACKerror ;SDA = High −> no acknowledge, error

exitI2C bclr SDA,PTBD
bset SDA,PTBDD
bclr SCL,PTBD
jsr delay5
bset SCL,PTBD
jsr delay5
bset SDA,PTBD
rts ;I2C transmission completed

;
;
;
ACKerror ldhx #mes2 ;get I2C error message

jsr sci_string_out ;send message to RS232
rts

;

sendStart pshx ;start the I2C link
bset SCL,PTBD ;preset Clock = H
ldx #$08 ;preset I2C clock bit count
bclr SDA,PTBD ;force DATA = L to Start the frame
nop

nextBit bclr SCL,PTBD ;CLOCK = LOW
lsla ;rotate 8 bits into Carry
bcs sendHbit
bclr SDA,PTBD ;SDA = L
bra posCLK

sendHbit bset SDA,PTBD ;SDA = H
posCLK bset SCL,PTBD ;CLOCK = High

decx ;decrement clock count
bne nextBit
bclr SCL,PTBD ;CLOCK = L
bclr SDA,PTBDD ;set PORTD Bit2 as Input to read

;the ACKNOWLEDGE
jsr delay5 ;wait to make sure the signal

;is stable
bset SCL,PTBD ;CLOCK = H
jsr delay5
pulx
rts

;
;
sendByte pshx ;send one byte to the I2C port

bset SCL,PTBD ;preset Clock = H
ldx #$07 ;preset I2C clock bit count
lsla
nop

AND8267/D

http://onsemi.com
7

nextBitD bclr SCL,PTBD ;CLOCK = LOW
lsla ;rotate 8 bits into Carry
bcs sendHbitD
bclr SDA,PTBD ;SDA = L
bra posCLKD

sendHbitD bset SDA,PTBD ;SDA = H
posCLKD bset SCL,PTBD ;CLOCK = High

decx ;decrement clock count
bne nextBitD
bclr SCL,PTBD ;CLOCK = L
bclr SDA,PTBDD ;set I/O as Input
jsr delay5
bset SCL,PTBD ;CLOCK = H
jsr delay5
pulx
rts

;
;
mes2 db “I2C error : no ACK return@”
;

1

BKGD2

3

4

PTB7/SCL 5
PTB6/SDA 6

7
PTB4/MISO 8
PTB3/MOSI 9

PTB2/SPSCK 10
PTB1/TxD 11
PTB0/RxD 12

PTA313
PTA214
PTA115
PTA016

U1

MC9S08QG8CDT
S1F1

1 2
3 4
5 6
7 8
9 10

JP2

CNTL

GND

1 2
3 4
5 6

JP1

BDM

GND

GND

+3 V

C1

GND

+3 V

D1

LED

R1
470R

12 3

456

7

8 9

10

11

1213

14
15

16

MCUPORT U2

ADM3202

GND

GND

C5

100 nF

C3

100 nF

C2

C6

1
2
3
4
5

9
8
7
6

JP3
RS232

+3 V

S5
SETA

S6

SETB

X1
GROUND

X2
LOGO

PTB5

PTB5S

C7

100 nF

R2 10 k

S7

RESET

GND

GND BKGD

PTB6S

GND

PTB2
PTB3

PTB2S
PTB3S

PTB4

PTB4S

R3
10 k

1
2

J1

PWR

GND

+3 V

C8 C9

Input Power Supply Regulation

1

GND
2

3

4

U3
MC33275

JP4

SETVCC

Vcc1

Aout 2Ain3

Bout 4Bin5

Cout 6Cin7

GND8

Din9 Dout 10

Ein11 Eout 12

MODE 13
Fin14 Fout 15

Vdd 16
U4

MC14504B

PTB5

PTB2
PTB3
PTB4

PTB6
PTB7

PTB6
PTB7

GND GND

+3 V

PTB5S

PTB2S
PTB3S
PTB4S

PTB6S
PTB7S

PTB7S

1
2
3

J2

PWR
GND

Figure 6. Remote Control Demo Board

1 �F/6.3 V

1 �F/6.3 V

R4
10 k

S2F2 S3F3 S4F4

1 �F

1 �F

VCC VDD

VSS

100 nF

GND

C4

RESET

PTB5/SS

VoutVin

100 nF

AND8267/D

http://onsemi.com
8

The voltage regulator U3 has been implemented to
accommodate large input supply voltage, the level shifter
–U4− being useful to drive peripherals powered from supply
higher than the 3.3 V maximum operating voltage of the
MC9S08QG8 micro controller. These two extra chips – U3
& U4 – are not mandatory in a final application and depend
solely upon the power supply/MCU voltage range.

The IDC−6 connector is used to program the memory
flash of the MC9S08QG8 by means of the P&E hardware.
On the other hand, the serial port, built with U2 and JP3, is
not necessary to control the NCP5602, but is a powerful tool
to monitor the operation during the debug.

C2

220 nF/6.3 V

C1

C4

C3

GND

GND

D1 LWY87S

D2 LWY87S

R3 10 k

LED1

LED2

SCL

SDA

IREFBK

Z1

GND

12
34
56
78
910

J1

CONTROL PORT

GND

TP1
SCL

TP2
SDA

GND

1
2
J2

POWER

GND

GND
1

LED1
2

LED/ICON
3

IREF
4

SDA
5

SCL
6

Vout
7

C2P

8

C2N

9

C1P

10

Vbat
11

C1N

12

U1 NCP5602

R1 10 k
R2

10 k

Standard Programming Sequence:
Byte #1 : I2C address = $9E
Byte #2 : Internal register = $01
Byte #3 : Iout value = $00 −> ILED = 0 mA

= $2x −> ICON mode
= $1E −> ILED max = 30 mA

Figure 7. NCP5602 Demo Board Schematic Diagram

VCC

220 nF/6.3 V

4.7 �F/16 V

VCC

Vout

VCC

4.7 �F/10 V

AND8267/D

http://onsemi.com
9

Figure 8. ICON Activation

Figure 9. Activate the Back Light : two LED, 2mA per LED

AND8267/D

http://onsemi.com
10

Figure 10. Switch Off Back Light and ICON

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada

Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910

Japan Customer Focus Center
Phone: 81−3−5773−3850

AND8267/D

LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local
Sales Representative

